Allgemein Archive - EEHE

Ab sofort können Sie hier online die Kurzfassung Ihres Beitrages für die Fachtagung EEHE 2019 vom 22.-23. Mai 2019 in Bad Nauheim einreichen.

Zum Upload

Seminar

Batteriemanagementsysteme für Lithium-Ionen-Batteriezellen

am 21.06.2018 in Essen
www.hdt.de/W-H010-06-590-8

Sie erhalten Know-how im Bereich Lithium-Ionen-Batteriezellen und deren Betrieb in Traktionspacks für Hybrid- und Elektrofahrzeuge. Batteriemanagementsysteme, Verfahren und Technologien zur Ladezustandsprognose werden erläutert.

Tagung

Induktives Laden – Kontaktlose Energieübertragung

gemeinsam mit dem Institut für Elektrische Energiewandlung (IEW) der Universität Stuttgart
am 16. – 17.05.2018 in Stuttgart
www.hdt.de/W-H010-05-393-8

Sie erhalten eine Einführung in die physikalischen Grundprinzipien und mathematischen Zusammenhänge der berührungslosen, induktiven Energieübertragung.

Tagung

Sensoren im Automobil

am 19. – 20.04.2018 in München
www.sensoren-im-automobil.de

Die Tagung bietet Automobilherstellern, Sensorlieferanten und Forschungseinrichtungen eine wiederkehrende Plattform, um innovative Sensorprinzipien unter dem anwendungsbezogenen Fokus der Automobilindustrie zu diskutieren.

Verschaffen Sie sich einen Überblick über die wichtigsten Trends in der Sensorik.
>>Folgende Themen werden behandelt

Tagung

Advanced Battery Power – Kraftwerk Batterie

Automotive and Energy Supply Solutions – Lösungen für Automobil und Energieversorgung

am 10. – 11.04.2018 in Münster
www.battery-power.eu

Profitieren Sie am 10. – 11. Arpil 2018 auf der internationalen Konferenz Kraftwerk Batterie / Advanced Battery Power von spannenden Rednern, internationalem Know-how und kompaktem Wissenstransfer auf der Batterietagung 2018 in Münster. Die führende Fachtagung rund um die Batterieforschung und Batteriepraxis mit über 60 Vorträgen und mehr als 170 wissenschaftlichen Postern ist eine hervorragende Plattform für den Erfahrungsaustausch. Auch 2018 werden wieder weit über 600 Fachbesucher aus aus Unternehmen, Forschungsinstituten und Universitäten erwartet.

Leistungselektronik für Elektro- und Hybridfahrzeuge

Schwerpunkt Lebensdauer und Zuverlässigkeit

Termin: 27. – 28.02.2018 in München

Leitung: Dr. Wolfgang Wondrak, Leistungselektronik Vorentwicklung, E-Motorenentwicklung und Leistungselektronik, Daimler AG, Sindelfingen

Leistungselektronik ist eine Schlüsseltechnologie auf dem Weg zur Elektromobilität. Die Umgebungsanforderungen im Automobil sind teilweise sehr verschieden von der Industrieelektronik. Zuverlässige und effiziente Komponenten für diese Anforderungen sind Grundvoraussetzungen für die Marktakzeptanz.

Warum Sie diese Veranstaltung besuchen sollten
In dem Seminar werden, ausgehend von den Grundlagen für eine robuste Auslegung und zuverlässigen Aufbau von Leistungsmodulen (Eigenschaften und Ausfallmodi), die Herausforderungen bei Leistungsmodulen und Invertern für die Elektrotraktion vorgestellt. Weiterhin werden aktuelle Lösungen und neue Entwicklungen bei Aufbautechnologien und Bauelementen diskutiert, die hinsichtlich Robustheit, Wirkungsgrad und Baugröße deutliche Vorteile versprechen. Den Teilnehmern wird dargelegt, welche Möglichkeiten zur Verbesserung der Zuverlässigkeit durch verbesserte Monitoringfunktionen und Schaltungskonzepte bestehen.

Weitere Informationen finden Sie unter:
www.hdt.de/W-H010-02-401-8

BATTERIETAGUNG 2018

am 09. -11.04.2018 in Münster
Weitere Informationen finden Sie auf: www.battery-power.eu

Leistungselektronik in Elektrofahrzeugen

Termin
am 30.11. – 01.12.2017 16:00 in Essen

Leitung
Marco Jung, Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES, Kassel
Prof. Dr.-Ing. Axel Mertens, Institut für Antriebssysteme und Leistungselektronik, Leibniz Universität Hannover

Die Einführung der Elektromobilität wird nur erfolgreich sein, wenn kostengünstige und zuverlässige Fahrzeuge zur Verfügung stehen. Eine wesentliche Schlüsseltechnologie hierfür ist die Leistungselektronik. Sie sorgt nicht nur für einen effizienten Antrieb, sondern ermöglicht auch eine einfache und komfortable Netzanbindung zur Ladung der Fahrzeugbatterie sowie eine effiziente Versorgung der Nebenaggregate.

Warum Sie diese Veranstaltung besuchen sollten
Das Seminar bietet einen Überblick über die komplette Bandbreite der Leistungselektronik in Elektrofahrzeugen. Dabei werden nicht nur die Grundlagen der einzelnen DC-DC-Wandler, des Antriebswechselrichters, der Ladetechnik und deren Bauteile behandelt. Vielmehr sollen dem Seminarteilnehmer auch Wissen und Einblicke über den Tellerrand hinaus, d.h. zu Antrieb, Batterie und Netz vermittelt werden.

Inhalt

  • Einführung und Systemüberblick zur Leistungselektronik im E- und Hybridfahrzeug (45 min)
  • Batteriesystem und Eigenschaften (90 min)
  • Elektrische Maschinen als Last für den Antriebswechselrichter (90 min)
  • Grundprinzipien leistungselektronischer Stellglieder (45 min)
  • Leistungshalbleiter und Zuverlässigkeit (90 min)
  • Wechselrichter (90 min)
  • Batterieladesysteme (90 min)
  • Netzanbindung (45 min)
  • Bordnetz und DC-DC-Wandler (90 min)

Die Anmeldung und weitere Informationen finden Sie unter:
www.hdt.de/W-H010-11-913-7

Dates
07.02.2017 (09:00) – 08.02.2017 (17:00)
in Garmisch-Partenkirchen (Dorint Resorts)

Chairman
Dipl.-Ing. Andreas Sehr
FEV GmbH, Aachen

Why you should attend this event

The conference will tackle various of these aspects, reviewing the state of the art and introduce interesting VCR solutions, among others the FEV VCR con-rod, with reference to different technical applications.

Apart from the deep insides into latest VCR Research and developments this new platform offers multiple opportunities for mutual exchange with reputable industry representatives and engineering experts.

Topic

The ongoing trend of downsizing and boosting of gasoline engines has already achieved impressive results however leads to an increased tendency of combustion knock at higher engine loads. Varying the compression ratio during engine operation is one measure to avoid this limitation and to enable the demand for increased torque and power with an improved fuel consumption in the entire engine map.

Varying the compression ratio on diesel engines results in reduced peak firing pressures and temperatures, beneficial for lowered thermo-mechanical stress and reduced engine-out pollutant emissions. This enables two different opportunities for VCR application. First option is to extend the power output on an already PFP limited base engine. Alternatively: Rightsizing the bearing dimension according the reduced peak firing pressure enables friction reduction and finally an improved fuel consumption. On top of these mechanical advantages, VCR provides potential to lower engine-out NOx under higher operating loads, important for optimal compliance of future RDE demands.

Dual fuel engines suffer from the compromise for the compression ratio. E.g. marine engines require a low compression ratio for the gas application while running most of the time on heavy fuel oil (HFO) where the high compression ratio would enable fuel consumption and operator cost reduction. Varying the compression ratio during engine operation is one measure to optimize efficiency for the different fuels.

Mehr Informationen und Anmeldung

EEHE Germany Highlights 2016

by: Ahad Ahmed Buksh

In the second week of June, key players of the automotive industry got together in Wiesloch, Germany to discuss the future electrical and electronic systems in Hybrid and Electrical Vehicles. The conference known as Electric and Electronic Systems in Hybrid and Electrical Vehicles and Electrical Energy Management (EEHE) or EEHE for short, featured a broad spectrum of participants ranged from Directors, Managers, and Engineers to Technical Specialists from companies like Daimler, Volvo, BMW, Ford, Bosch, Continental, Denso, Valeo, etc.

Hybrid/Electric vehicle market really growing

The market for HEVs and EVs is finally showing signs of real growth and many vehicle manufacturers stressed their needs for increased share of hybrid and electric vehicles in fleet management, mainly as a result of emission legislation.

Daimler, for instance, is expecting to grow its fleet of electrified vehicles (HEV/EVs) by 70% in 2016 to more than 60,000 this year. The company also showcased a smartphone application for HEV/EVs that shows data on charging profile, nearest charging stations and in future, and eventually to turn on the heater before driving.

For its part Volvo has kept its focus on the development of high voltage systems. The company demonstrated a strong commitment to electrification with its new T8 twin engine. Volvo is targeting 10% electrified share of its fleet offering by 2020 and expects to have a fully electric car commercially available by 2019.

48 V, a cost effective solution

Players like Valeo and FEV demonstrated a modular approach for electric architectures. Both suppliers stressed the need for 48 V systems to achieve the required CO2 emission targets.

Valeo suggested a dual-board net approach where there will be two sources, namely a 12 V lead acid battery along with a 48 V lithium-ion battery pack. The 12 V battery would supply power to low voltage control systems like head unit or airbag ECU, whereas the 48 V source would be dedicated to high current operations such as energy recuperation, boosting and active suspension. Valeo expects to supply 48 V systems to more than twenty different car manufacturers in the next three years, although this sounds very optimistic.

ECU consolidation in the automotive sector

As the industry moves towards the autonomous cars, major Tier 1s are focusing on optimizing the power consumption of future cars.

Continental demonstrated how adding new electrical components for different levels of automation adds to CO2 emissions. The company showed that in order to reach the L2 (partial automation) level, CO2 emissions increase by as much as 4.2 g/km, while attaining the L5 (high automation) level implies further detrimental emissions behavior to the tune of +6.7 g/km. This counterproductive surge in emissions demands efforts on architectural optimization, and one way is through the integration of electronic control units (ECUs). Today, a premium car exceeds 70 ECUs—one per application. While more functions will emerge, in future Continental sees multiple functions implemented in a single ECU. Continental demonstrated its own “evolution” and “revolution” version with new concepts for electric and electronic architectures.

Specifically, for hybrid/electric vehicles Continental demonstrated a prototype known as Bidirectional Charge and Traction System (BCTS). There are two significant features here, firstly the use of advanced electronics components based on SiC and second, multi-functional operation:

  • DC/AC conversion for the motor
  • DC/DC voltage conversion
  • AC/DC and DC/DC conversion for the battery

Today, the above operations are performed by individual ECUs but this multi-function system further validates the need to consolidate within ECUs. This not only saves power but reduces the cost and weight of modules. Another interesting aspect of the BCTS was that it used SiC MOSFETs and diodes as components. Even though BCTS is a prototype, the fact that Continental is testing its systems with SiC components goes to show that SiC may well just be the future technology for high voltage applications.

Conclusions

EEHE provided an opportunity for the major industry players to showcase their latest work and thinking. From the presentations and discussions it was evident that each automotive supplier is working hard to find new ways to meet impending new stringent CO2 targets with electrification as the main strategy.


Ahad Ahmed Buksh
Analyst Automotive Semiconductors
IHS Technology
Friedenheimer Brücke 29, Munich 80639
Phone: +49 8989526 9015
ahad.buksh@ihs.com